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Abstract - Fuzzy random variables possess several interpretations. Historically, they were proposed either as a tool for handling linguistic 
label information in statistics or to represent uncertainty about classical random variables. Accordingly, there are two different approaches to 
the definition of the variance of a fuzzy random variable. In the first one, the variance of the fuzzy random variable is defined as a crisp 
number that makes it easier to handle in further processing. In the second case, the variance is defined as a fuzzy interval, offering a gradual 
description of our incomplete knowledge about the variance of an underlying, imprecisely observed, classical random variable. In this work, 
we first discuss another view of fuzzy random variables that comes down to a set of random variables induced by a fuzzy relation describing 
an ill-known conditional probability. This view leads to yet another definition of the variance of a fuzzy random variable, in the context of the 
theory of imprecise probabilities. The new variance is a real interval, which achieves a compromise between both previous definitions in 
terms of representation simplicity. Our main objective is to demonstrate, with the help of simple examples, the practical significance of these 
definitions of variance induced by various existing views of fuzzy random variables. Finally, fuzzy random variable concept is implemented in 
modeling of contaminant migration through a soil layer. The transport of contaminant through a saturated soil layer is modeled by advection, 
dispersion, sorption and first order degradation. The parameters of the contaminant migration model such as seepage velocity, porosity of 
soil, dispersion coefficient and distribution coefficient are taken into consideration as fuzzy random variable due to their dual nature of 
fuzziness and randomness.  
 
Index Terms—Fuzziness, Randomness, Advection, Contaminant migration, dispersion, retardation 
 

——————————      —————————— 
 
 
1. INTRODUCTION 
 
The concept of fuzzy random variable, that extends the 
classical definition of random variable, was introduced 
by Feron [1] in 1976. Later on and sometimes 
independently, Kwakernaak [2, 3], Puri and Ralescu [4], 
Kruse and Meyer [5], Diamond and Kloeden [6], 
proposed other variants. In [7], Kratschmer surveyed 
all of these definitions and proposed a unified 
approach. In all of these papers, a fuzzy random 
variable is defined as a function that assigns a fuzzy 
subset to each possible output of a random experiment. 
The different definitions in the literature disagree on 
the measurability conditions imposed to this mapping, 
and in the properties of the output space, but all of 
them intend to model situations that combine fuzziness 
and randomness. Since the introduction of this concept, 
much effort has been devoted to the generalization of 
different probabilistic concepts and classical results to 
the case when outcomes of a random experiment are 
represented by fuzzy sets. Generalized definitions of 
descriptive parameters, useful as information 
summaries for probability distributions, can be divided 
into two groups. As an application of fuzzy random 
variable, in the field of quantification of uncertainty, 
migration of contaminants through soil layer just after 
the release may reach the biosphere to pollute or 
contaminate the environment is demonstrated. 
Monitoring or tracing of such contaminants in and 

around of any industry (nuclear or chemical) is one of 
the important program of environmental safety.  The 
transport mechanisms, governing transport equation 
and the analytical solution of the transport equation are 
given for instantaneous and continuous sources [8-10]. 
The analytical solution play a major role in providing 
(1) an efficient model for controlled laboratory 
experiments and (2) a simple check to more 
complicated models that require numerical solutions. 
Moreover, calculation using simple analytical solution 
provides a conceptual knowledge of the effects of fuzzy 
randomness of sorption, transformation, advection and 
dispersion on the rate of subsurface transport. 
However, the physical processes like advection, 
dispersion and sorption being governed by the solution 
of the concentration of the contaminant that migrates 
through a soil layer. Fuzziness is due to imprecise 
measurement at any laboratory and randomness is due 
to the variability of the measured value across various 
laboratories. Randomness of the parameter is 
characterized by the standard probability distribution 
such as normal, lognormal, etc. and fuzziness is 
attributed by triangular or trapezoidal fuzzy number.  
 
The fuzzy random parameters the model output 
provides a fuzzy random membership function of the 
fuzziness is obtained from expert’s opinion. Fuzziness 
and randomness are complementary which can be 
brought under same umbrella by employing the great 
relationship between two named as fuzzy random 
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variable (FRV). This new variable, FRV is a measurable 
function [11] from a probability space to the set of fuzzy 
variables [11]. FRVs can also be referred as random 
fuzzy sets or simply random sets [11]. 
 
The paper presents these FRVs in modelling 
contaminant (radionuclide or chemical) migration 
through soil layer. The paper addresses the distinction 
between fuzziness and randomness, preliminary 
concepts of probability, possibility and credibility 
required to understand the concept of, FRVs, various 
kinds of FRV model with a comparison among them 
and the fundamental concepts pertaining to the 
transport process of the migration of contaminant 
through a soil layer. Finally, the model describing the 
migration of the contaminant through soil layer 
presents a new direction of environmental safety 
analysis in presence of an admixture of variability and 
uncertainty due to randomness and fuzziness of the 
model parameters.  
 
 
2. FUZZINESS AND RANDOMNESS – ARE 

THEY SAME? 

In order to implement the concept of fuzzy random 
variable for assessing the uncertainty of any physical 
model, it is mandatory to know whether randomness 
and fuzziness are connotation or not. It has been 
already pointed out in section 1 that these two are 
complementary, so, fuzziness and randomness are not 
the same. Basically randomness to fuzziness is one kind 
of paradigm shift. Randomness addresses the 
variability of the uncertain variable whereas fuzziness 
describes the ignorance of the variable. Fuzziness can 
be reduced whereas randomness can’t be reduced. 
Randomness is described by the probability 
distribution, whereas, fuzziness is represented by 
possibility distribution. Therefore, it can be envisaged 
that there exists a distributional difference as well as 
membership difference between fuzziness and 
randomness. Let us first focus on the distributional 
differences and demonstrate it by a simple example. A 
representative probability distribution, based on survey 
of radiation history of occupational workers in any 
nuclear plant, a probability of 0.94 can be assigned as 
zero overexposure, a 0.06 probability of one over 
exposure, and a 0.004 probability of two overexposures.  
In contrast, one can imagine that the representative 
possibility distribution of zero and one overexposure of 
occupational workers each has a high possibility of 
occurrence, and there is some possibility that the more 
than two occupational workers will be overexposed.  
Therefore, it can be concluded that, a probable event is 
always possible, while a possible event need not be 

probable. Zadeh (1978) called this heuristic connection 
between possibilities and probabilities the 
probability/possibility consistency principle [12]. This 
informal principle may be translated as: the degree of 
possibility of an event is greater than or equal to its 
degree of probability, which must be itself greater than 
or equal to its degree of necessity. Now consider the 
membership differences by accounting two groups of 
members of the public, one is within 5 km and the other 
is beyond 5 km of the site boundary of a radiochemical 
facility, and they are being classified as high dose and 
low dose category on the basis of the ingestion dose 
received. Ingestion dose received is due to the ingestion 
of contaminated food. There exists an uncertainty as to 
whether these groups are categorized perfectly or not in 
the sense that the dose received by the low dose 
category is very low and the dose received by the high 
category is moderately high.    Low category is to be 
classified on the basis of ingestion dose received having 
membership of 0.8 whereas high being a removal 
category of 0.9. Assuming one or other has to be 
classified as traditional ingestion category is to be 
classified on the basis of probability and is known to 
have a probability of dose, which one should be 
accepted for safety assessment. In this situation an 
obvious conclusion is that fuzzy degrees are not the 
same as probability percentages. That is, grade of 
membership is different from probability of 
membership. 
 
 
3. DEFINITIONS: PROBABILITY, POSSIBILITY, 

NECESSITY, CREDIBILITY AND BOREL SETS 

In view of the difference between randomness and 
fuzziness, let us define formally the probability, 
possibility and credibility spaces. Basic features of these 
spaces are presented in Table 1 and following this we 
define them in the following way: 
 
A. Probability 

As indicated in Table 1, a probability space is 
defined as the 3-tuple ((Ω, A, Pr), where Ω = {ω1, ω2, 
ω3 ,….., ωN} is a sample space. A is the σ-algebra of 
subsets of Ω and Pr, a probability measure on Ω, such 
that it satisfies: 
 
Pr(Ω) = 1,  Pr{φ} = 0, 0 ≤ Pr{A} ≤ 1 for any A ∈ A. For 
every countable sequence of mutually disjoint events 
{Ai}, i = 1, 2, …. 
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  Table 1: Probability, Possibility and Credibility 
Spaces 
 

 

Probability measure satisfies the law of excluded 
middle (which requires that a proposition be either 
true or false), the law of contradiction (which requires 
that a proposition cannot be both true and false), and 
the law of truth conservation (which requires that the 
truth values of a proposition and its negation should 
sum to unity) [13].  
 
B. Possibility 

A possibility space from Table 1 is defined as the 3 
tuple ((Θ,P(Θ), Pos), where Θ = {θ1, θ2,…., θN} is a 
sample space, P(Θ), also denoted as 2Θ, is the power 
set of Θ, that is, the set of all subsets of Θ, and Pos is a 
possibility measure [6] defined on Θ. Pos{A}, the 
possibility that A will occur, satisfies: Pos{Θ} = 1,  
Pos{φ} = 0,  0 ≤ Pos{A} ≤ 1, for any A in P(Θ) 
 

{ } { } sup               (2)i i i iPos A Pos A=  
 
for any collection {Ai} in P(Θ).  The heavy red line as 
shown in Fig. 1 represents the possibility of a fuzzy 
event characterized by ζ ≥ x, where ζ = (2,5,9) is a 
triangular fuzzy variable given by the mathematical 
form as      

(3)        
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Fig. 1. Possibility that ζ is greater than x 

It can be stated that the possibility of an event is 
determined by its most favourable case only, in 
contrast to the probability of an event, where all 
favourable cases are accumulated. By its very nature, 
the possibility measure is inconsistent with the law of 
excluded middle and the law of contradiction and 
does not satisfy the law of truth conservation [13]. 

 
C. Necessity 

The necessity measure of a set A often is defined as 
the impossibility of the opposite set Ac [13]. Formally, 
let (Θ, P(Θ),Pos) be a possibility space, and A a set in 
P(Θ). Then the necessity measure of A is defined by 

Nec{A} = 1 – Pos{Ac}        (4) 

Considering the triangular fuzzy variable ζ = (2,5,9), 
we can represent Nec{ζ ≥ x} by the mathematical 
equation, (The red line of Fig. 2 shows the necessity 
measure).  
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It can be noted from Fig. 2 that,  Nec{ζ ≥ x}= 1- Pos{ζ < 
x}. 
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Fig. 2. Necessity that ζ is greater than or equal to x 

D. Credibility 

Given the limitations of the possibility measure, 
Liu and Liu (2002) suggested replacing it with what 
they termed as credibility measure [14]. The 
credibility measure takes the form  
 
Cr{X ≤ r} = 0.5 (Pos{ X ≤ r} + Nec{ X ≤ r})                (6) 
 
or, equivalently,  
 

( ))(sup1)(sup
2
1}{ ttrXCr xrtxrt µµ >≤ −+=≤

The set {Cr} on the power set P is called a credibility 
measure if it satisfies the following four axioms [15] 
(1) Normality:  Cr{Θ} = 1 
(2) Monotonicity: Cr{A} ≤ Cr{B} 
       whenever A ⊂ B 
(3) Self-Duality: Cr{A} + Cr{Ac} = 1 for any event A 
(4) Maximality:  Cr{∪I Ai} = supi Cr{Ai} for any 

events {Ai} with supi Cr{Ai} < 0.5 
 
The triplet (Θ, P(Θ), Cr) is called a credibility space. It 
can be stated that the credibility measure is a special 
type of non-additive measure with self-duality. In this 
context, a fuzzy event may fail even though its 
possibility achieves 1, and may hold even though its 
necessity is 0. However, the fuzzy event must hold if 
its credibility is 1 and fail if its credibility is 0. The 
mathematical representation of the credibility of ζ ≥ x 
can be written with the help of the given triangular 
fuzzy number (a, b, c) ≡ (2,5,9) as  

1                 x a,
2b a x     a x b,
2(b a)

Cr( x)              (7)
c x        b x c,

2(c b)
0                 x c

≤
 − − ≤ ≤
 −

ζ ≥ =  − ≤ ≤
 −


≥
    

The solid red line as shown in Fig. 3 represents the 
credibility value of the fuzzy event characterized by ζ 
≥ x. 
 

 

Fig.3. Credibility that ζ is greater than or equal to x 
 

Concepts of fuzzy number and α-cuts can be found 
elsewhere in [16] and for that reason let us define 
Borel sets: 
 
E. Borel sets 

If F is a collection of subsets of the sample space, Ω, 
then F is said to be a σ-algebra if the following 
conditions hold: Ω ∈ F; if A ∈F then Ac ∈ F;  and if A 

= 
∞
=1i iA and Ai ∈ F for i ∈ I+, then A∈ F. The Borel 

σ-algebra, B is the smallest σ-algebra that contains the 
set of all open intervals in R, the set of real numbers. 
Elements of B are called Borel sets and (R, B) is called 
Borel measurable space. An example can be given to 
clear the concept of Borel set. Let us consider the 
conflict case of consumption of wheat in a typical 
family in southern region of India. One group gave 
this figure as [100, 200] kg/yr and the other group 
said [150, 300] kg/yr. If at least one of these groups is 
correct, the consumption of wheat will fall within the 
union of two, i.e., [100,300]. But, if both the groups are 
correct, the consumption of wheat will fall in the 
intersection of their estimates, that is, the interval 
[150, 200]. Borel sets are used to describe these types 
of data. 
 
4.  FUZZY RANDOM MODELS 

Three kind of fuzzy random variables are cited in 
the literature [2-5]. One is due to Kwakernaak (1978, 
1979) [2-5], who coined the term “fuzzy random 
variable” and interpreted as FRVs as “random 
variables whose values are not real but fuzzy 
numbers”. The second one is due to Puri and Ralescu 
(1986) [4], who regarded FRVs as random fuzzy sets. 
The third one is by Liu and Liu (2002, 2003). 
Accordingly, we have three kinds of fuzzy random 
variable models and we present all the FRV models as 
follows: 
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 4.1   Kwakernaak FRV Model 

In this model, a FRV is a mapping ζ: Ω→ F(R) such 
that for any α∈ [0,1] and all ω ∈ Ω, the real valued 
mapping is as follows: 

,:inf R→Ωαζ satisfying

αα ωζωζ ))(inf()(inf = , and ,:sup R→Ωαζ  

satisfying αα ωζωζ ))(sup()(sup = . These real 
valued mappings are real valued random variables, 
that is, Borel-measurable real-valued functions. These 
α-level constraints on ζ may be summarized as 

].))(sup(,))([inf()( ααα ωζωζωζ =  In short, the 
Kwakernaak FRV takes the form of a mapping from  
Ω to the left and right hand side of the fuzzy target 
F(R), where the latter are real-valued random 
variables. If X be a FRV and AΠ is the collection of all 
A-measurable random variables of Ω, then the kth 
moment of Kwakernaak FRV x, E(xk) is a fuzzy set on 
R with  

         k
k

x AE(x )
(x) sup{ (U) |   U , U x}, x Rµ = µ ∈ Π Ε = ∈  (8) 

The fuzzy variance of X is a fuzzy set Vark(x) on [0,∞) 
with 

       

 

k

2 2 2 2
var (x) x A( ) sup{ (U) |  U ,D U }, [0, ) (9)µ σ = µ ∈ Π = σ σ ∈ ∞

 

 
 4.2   Puri and Ralescu FRV Model 

Prior to present Puri and Ralescu (1986) FRV 
model [4], it is required to describe Banach space in 
short. Banach space is a normed linear space which is 
complete as a metric space. Banach spaces are used to 
extend the domain of FRVs from the real line to 
Euclidean n-space. Puri and Ralescu (1986) 
conceptualized a FRV as a fuzzification of a random 
set [4]. If (B, |.|) be a separable Banach space, K(B) be 
a nonempty compact subset of B, this model is 
addressed a FRV as a mapping ζ: Ω→F(B) such that 
for any α∈[0,1] the set-valued mapping ζα : Ω→K(B) 
(with ζα(ω) = (ζ(ω))α for all ω ∈ Ω) is a compact 
random set, that is, it is Borel-measurable with the 
Borel σ-field generated by the topology associated 
with the Hausdorff metric on K(B) [16] 

 
H q Q p Pp P q Q

d (P,Q) max{sup  inf | p q |,sup  inf | p q |}
∈ ∈∈ ∈

= − −
 

If P and Q are bounded, then the Hausdorff metric 
becomes

Hd (P,Q) max{| inf p inf q |,  | sup p supq |} (11)= − −  

4.3 Expectation value of a Puri and Ralescu 
FRV  

It is known that a FRV ξ is said to be an integrably 
bounded FRV associated with the probability space 

(Ω, A, P) if an only if ),,,(1
0 PAL Ω∈ξ where, for 

the function f, 
11L ( ,A,P) {f | f : R,A measurable,   f dP }Ω = Ω → − < ∞∫  

Now, given the probability space (Ω, A, P), ξ an 
integrably bounded FRV associated with (Ω, A, P), 
and S(F) a nonempty bounded set with respect to the 
L1(P)-norm, the expected value of ξ is the unique 

fuzzy set )|(~ PE ξ of Rn such that 

dPPE ∫
Ω

= αα ξξ ))|(~( for all α∈[0,1], where

)}(|{ αα ξξ SfdPfdP ∈= ∫∫
ΩΩ

 is the Aumann 

integral [17] of ξα with respect to P.  Puri and Ralescu 
defined the expected value (EV) of a FRV as a 
generalization of the EV. Operationally, when a fuzzy 
random variable ξ: Ω→F(R) is integrably bounded, 
the EV of ξ is unique and for all α∈[0,1], is given by 
the compact interval [E(inf ξα), E(sup ξα)]. 
 
4.4 Variance of a Puri and Ralescu FRV  
 
The variance should be used to measure the spread or 
dispersion of the FRV around its EV [18]. 
Accordingly, scalar variance of a Puri and Ralescu 
FRV is defined as  

( )
1

0

1( ) [ ( ) ( )]            12
2

= +∫V X V X V X dαα α
  
 

4.5   The Liu and Liu FRV Model 
 
 Liu and Liu(2002, 2003) [19] expressed concern that 
both the Kwakernaak and Puri and Ralescu  
RV models were based on the possibility measure, 
and, as such, did not obey the law of truth 
conversation and were inconsistent with the law of 
excluded middle and the law of contradiction. To 
overcome these perceived shortcomings, they based 
their FRV on the credibility measure [20],  
 
Cr{A} = 0.5(Pos{A} + 1 – Pos{Ac})              (13) 
 
which they contended plays the role of probability 
measure more appropriately than either the 
possibility and necessity measures. Finally, their FRV 
model incorporated a scalar, rather than a fuzzy, 
expected value, since they viewed the latter as 
problematic from an implementation perspective. On 
the basis of credibility measure, Liu (2006) defines a 
fuzzy random variable as a function ξ from a 
probability space (Ω,) 
A, Pr) to the set of fuzzy variables such that 
Cr{ξ(ω)∈B} is a measurable function of ω for any Borel 
set B of R [19]. 
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4.6 Expectation value of the Liu and Liu FRV 
 
If  ξ is fuzzy random variable defined on the 
probability space (Ω, A, Pr), then the expected value 
of ξ as per Liu and Liu (2006) is defined as [19, 20]  
 

)14(}{}{][
0

0
                                   ∫ ∫

∞

∞−
≤−≥= dxxCrdxxCrE ξξξ

   
 

 
provided that at least one of the two integrals is finite. 
Alternatively, an expected value of ξ can be 
conceptualized as  
 

0

0
E[ ] [  Cr{ ( ) r} dr Cr{ ( ) r} dr]Pr(d ) (15)

∞

Ω −∞
ξ = ξ ω ≥ − ξ ω ≤ ω∫ ∫ ∫

provided that at least one of the two integrals is finite 
and in the event that ξ is a nonnegative fuzzy random 
variable,  expectation of ξ can be written as 
 

        
0

E[ ] Cr{ ( ) r}dr Pr(d )
∞

Ω
ξ = ξ ω ≥ ω∫ ∫      (16) 

According to the definition of the expected value of 
fuzzy variable, ξ as given in Eq. (14), the equipossible 
fuzzy variable on [a, b] has an expected value (a + 
b)/2. The triangular fuzzy variable (a, b, c) has an 
expected value (a + 2b+ c)/4; this can be derived as 
follows: 
 

c b

b a

1 x c 1 x aE[ ] b dx dx
2 b c 2 b a

c b a b a 2b cb
4 4 4

− −
ξ = + −∫ ∫

− −
− − + +

= + + =  
  

 
In a similar way, the trapezoidal fuzzy variable (a, b, 
c, d) has an expected value of (a + b + c + d)/4. As an 
example, a fuzzy variable, ξ is called exponentially 
distributed if it has an exponential membership 
function  

1
 x(x) 2 1 exp ,   x 0,m 0;

6  m

−
  π

µ = + ≥ ≥     
 where, m 

is the parameter of the exponential membership 
function; The expected value of the FRV, ξ is 

π2ln6 m . Further, if ξ is a normal fuzzy variable 
with normal membership function 

,0,,))
6

exp(1(2)( 1 >∈
−

+= − σ
σ

π
µ Rx

ex
x

 
then 

the expected value of ξ is e.  
 
4.7   Variance of the Liu and Liu FRV 
 
If ξ is a FRV with finite expected value E[ξ], the 
variance of ξ  according to  Liu and Liu (2003), is 

defined as the expected value of the FRV (ξ - E[ξ])2 
[19, 20]. Therefore, we can write 
 
                     Var[ξ] = E[( ξ - E[ξ] )2]      (17) 
 
If  ξ is the fuzzy normal variable, then the variance of  
ξ is  
 

21)
6

exp(1(][ σ
σ

πξ =+= −∞
∫ drrVar
e

 
 

 
5. FUZZY RANDOM CONTAMINANT 

MIGRATION MODEL 
 

5.1 Mathematical formulation 
The model in one dimension is formulated on the 
basis of the following assumptions: 
  
• The porous medium is assumed as homogeneous, 

isotropic and saturated. 
• The flow is steady so that Darcy’s law holds good 
 
The flow is described by the seepage velocity, which 
transports the dissolved substance by advection. One-
dimensional advection-dispersion equation for a 
reactive contaminant with first order contaminant 
degradation including radioactive decay is given by 
[21, 22] 
 

CCk
x
C

x
CD

t
CR xx

~~~
~

~~~~
2

2
λν −−

∂
∂

−
∂
∂

=
∂
∂

  (18) 

 

where xD~ = FRV, groundwater dispersion coefficient  

(m2/day); C~  = FRV, contaminant concentration in 
the aqueous phase (mg/l); x = distance (within the 

soil layer); R~ = FRV, the retardation factor = 
)]~/(1[ nKdbρ+ ; for non-reactive solutes, the 

retardation factor is a crisp number and  R = 1; ρb = 

the bulk mass density of the porous medium; dK~ = 

FRV, the distribution coefficient; n~  = FRV, the 
effective porosity; xν~  = FRV, pore water velocity 

(m/day) (seepage velocity); k = first order rate 
constant for contaminant degradation (day-1) and it is 
a crisp number; λ = radioactive decay constant of the 
specific nuclide of interest (day -1), t = time of 
observation (day). A number of analytical solutions of 
Eq. (18) on the basis of its integration with the specific 
boundary conditions for the system of interest 
provide the transport of contaminants in 
groundwater systems. The fuzzy random model 
presented in this paper is a pulsed model because a 
pulse of contaminant, such as a leaking underground 
storage tank or the site of an accidental hazardous 
chemical materials spill is used as an input. 
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Assumptions used to obtain the analytical solution of 
Eq. (18) are: 

• The tracer is ideal, with constant density and 
viscosity; 

• The fluid is incompressible; 
• The medium is homogeneous and isotropic; 
• Only saturated flow is considered. 

 
5.2   Pulse model 
 
A tracer pulse (instantaneous input) at x = 0 is used 
with zero background concentration. As the 
contaminant moves downstream with the seepage 
velocity, xν  in the +x direction, it spreads out which 
is mathematically formulated by the solution of Eq. 
(18) as  
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where Q = the quantity of contaminant spilled per 

cross-sectional area (g/m2), RDD xx
~~~ ' =  (m2/day), 

Rxx
~~~ ' νν = (m/day), Rkk ~' = , the first order loss 

coefficient (day-1), R~/' λλ =  (day-1) and R~ = the 
retardation factor. All the symbols marked with tilde 
(~) sign in Eq. (19) are fuzzy random variable (FRV). 
Retarded fronts can be derived from conservative 

fronts by adjusting the value of RDD xx
~~~ ' = and 

Rxx
~~~ ' νν = in one dimension. Larger values of xD~

tend to spread out the fronts, while large values of the 
retardation factor tend to slow the velocity of the 

centre of the tracer (C/C0 = 0.5) and reduce xD~  by a 

factor of 1/ R~ .  
 
6. RESULTS AND DISCUSSIONS  
 
The parameters Dx, νx, and n of the contaminant 
migration model (Eq. (19) and Eq. (20)) are fuzzy 
random variable. On the basis of the experimental 
values measured at any standard laboratory, the 
randomness fuzziness [23, 24] property of the 
dispersion coefficient, Dx is taken into account as a 
fuzzy normal random variable, the mean of which is a 
triangular fuzzy variable and standard deviation is 
the 10% of the most likely value of the triangular 
fuzzy number. Following the same strategy, porosity 
of the soil, ‘n’ is represented here as a fuzzy uniform 
variable, for which both the lower and upper limits 
are a triangular fuzzy number. The randomness of the 
fuzzy random parameter seepage velocity or pore 

water velocity, νx, is represented by a lognormal 
distribution, specified by the fuzzy geometric mean 
and crisp geometric standard deviation. In order to 
sample this, geometric mean and geometric standard 
deviation are transformed into the corresponding 
arithmetic mean and arithmetic standard deviation. 
Since the geometric mean is a fuzzy number, 
fuzziness of the corresponding arithmetic mean (AM) 
is formed as triangular fuzzy number by subtracting 
the arithmetic standard deviation (ASD) from the AM 
and by adding the same with ASD. The density ρ of 
the soil, the distribution coefficient, Kd and the 
degradation constant, k are represented as crisp 
variable. Radioactive decay constant is obviously a 
crisp number. Monte Carlo simulation technique is 
used to generate the sample values of random part of 
the FRV whereas alpha cut method is used to 
generate the compact interval of the fuzziness part of 
FRV. Puri and Ralescu FRV model is used to 
represent the FRVs of the present model and 
accordingly, from the point of simplicity of 
computation the corresponding mathematical 
structures of these fuzzy random variables are as 
follows: 
 

x l m r x

L M R 1 1 2 2

D ~ N([ , , ], ),  ~ Ln([AM , ASD ]),
    Ln([ , , ], ),    n ~ U([l , u ],   [l , u ])

µ µ µ σ ν = µ = σ

µ = µ µ µ σ

  


  

Algorithm followed to generate the sample values of 
these FRVs are as follows: 
 

Step 1. Generate sample values of Dx: Alpha cut 
representation of the fuzzy number µ, is 
first generated for each α varying from 0 
to 1 with an increment of 0.1. Each such 
alpha cut values of µ is a compact 
interval such as [µLB

α, µUB
α]. Now lower 

and upper bound of alpha cut 
representation of Dx are generated by 
traditional sampling techniques of a 
normal distribution, lower bound with 
N(µLB

α, σ) and the other one with 
N(µUB

α, σ).         
 

Step 2. Generate sample values of νx: Alpha cut 
representation of the AM (triangular 
fuzzy number) of νx is constructed for 
each α∈[0,1] with an increment of 0.1. 
Finally, using the traditional Monte 
Carlo sampling of a lognormal 
distribution with [AMLB

α, ASD] and with 
[AMUB

α,ASD], lower and upper bounds 
of sample values of pore water velocity 
are generated. 

 
Step 3. Generate sample values of n: Alpha cut 

representation of the lower and upper 
limits of the uniform distribution (both 
are triangular fuzzy number) of n are 
constructed for each α∈[0,1] with an 
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increment of 0.1. So, here we have the 
structure as n ~ U([LB1

α, UB1
α], [LB2

α, 
UB2

α].  All these bound values being 
positive number, sample values of the 
lower and upper bound of n are 
generated by traditional Monte Carlo 
sampling of an uniform distribution with 
U([LB1

α, LB2
α] and with U[UB1

α, UB2
α] 

respectively. 
 

Step 4. Generate sample values of R: Lower and 
upper bound of each alpha cut level of 
the derived parameter, retardation factor 
R are constructed by using the 
expression of R as given by the 
expression )]~/(1[ nKdbρ+ .  

Step 5. Compute C: The lower and upper 
bounds of fuzzy random distribution of 
the leachate concentration, C are 
generated by using these sample values 
in Eq. (19). Two sets of concentration 
matrices, one for varying downstream 
distance and fixed time, and the other for 
fixed downstream distance and varying 
time are generated. The lower and upper 
bounds of each set of concentration 
matrix is populated with all the alpha 
cuts (i.e., α= 0 to 1 with a step size of 0.1) 
as columns and sample size of the 
random distributions as rows. As 1000 
sample values of each of the FRV were 
generated, number of rows of 
concentration matrix are 1000. Therefore, 
the dimension of the each lower and 
upper bounds of the concentration 
matrix for for each such set is (1000 x 11). 
Length of downstream distance array is 
used as 50 (x = 1 m to 500 m with a step 
size of 10 m) and that of time array as 10 
(t = 1 y to 10 y with a step size of 1 y). 
Considering the distance and time array 
our new dimension of lower and upper 
bounds of concentration matrix become 
(1000 x 11 x 50) for first set (varying 
distance but fixed time) and      (1000 x 11 
x 10) for the second set (varying time but 
fixed downstream distance). Therefore, a 
mathematical structure of concentration 
matrix can be written as 

 

)()50111000()50111000( }]~[,]~{[ ttimeUBLB CC ××××
αα

 

)tan()10111000()10111000( }]~[,]~{[ cedisUBLB CC ××××
αα

 
 
Dimension of these matrices tell us that a substantial 
amount of post processing is required to understand 
the role of fuzzy random variable in modelling 
contaminant migration through a soil layer. Results of 

the implementation of fuzzy random in modelling 
migration of contaminant through soil layer via post 
processing and the corresponding discussions are 
presented in section 7. 
 
7. RESULTS AND DISCUSSIONS 
 
Input data set used for executing the fuzzy random 
model of contaminant migration through soil layer is 

Dispersion coefficient, xD~  (m2/day): Fuzzy normal: 
N(Fuzzy (TFN) µ,  Crisp σ) = N ([0.6, 0.8, 1.0], 0.08), 
Porosity of soil, n: Fuzzy uniform, U([0.2, 0.4, 0.6], 
[0.7, 0.8, 0.9]), Seepage (pore water) velocity, xν~
:Fuzzy lognormal, Ln(GMTFN, GSDTFN), TFN: 
Triangular fuzzy number, Ln(<2,5,7>, <3,6,8>), 
Distribution coefficient, Kd (m3/kg) = 2.8, Density of 
the soil, ρ (kg/m3) = 1.4, Degradation coefficient, k 
(day-1) = 0.0004, Radionuclide considered is 137Cs, 
Radioactive decay constant, λ (day-1) = 30 y, Source 
term, Q = 1740 g/m2, Downstream distances are: 1 m 
to 500 m with a step size of 10 m and time of 
observations taken into consideration are: 1 to 10 y 
with a time step of 1 y. 
 
Results of set 1:  
In this set, computation of fuzzy random 
concentration of contaminant is carried out at a fixed 
time of 1y (365 days) and at various downstream 
distances ranging from 1 m to 500 m with a step size 
of 10 m. Randomness of the fuzzy random parameter 
longitudinal dispersion coefficient is addressed by the 
cumulative distribution function at various alpha cuts 
of its fuzziness as shown in Fig. 4, whereas its 
fuzziness is addressed by the triangular membership 
function as presented in Fig. 5. The randomness of the 
fuzzy random parameter seepage (pore water) 
velocity is shown in Fig.6 in the form of left and right 
CDF at various alpha cuts. Membership function 
corresponding to mean value, 5th and 95th percentiles 
of the randomness of the derived fuzzy random 
parameter, the retardation factor is presented in Fig. 
7. It can be easily make a comment on Fig. 7 that 
derived fuzziness cannot be a L-R fuzzy number. 

 
 Fig. 4 Left and right CDF (randomness) of dispersion 
coefficient at various  
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      alpha cut value of its fuzziness 
 

 
 
Fig. 5 Triangular membership function of dispersion 
coefficient corresponding  
              to its mean, 5th and 95th percentile of CDF 
 

 
 
Fig. 6 Left and right CDF (randomness) of pore water 
velocity 

   
 
Fig. 7 Triangular membership function of mean value, 
5th and 95th percentiles of Retardation factor 
 
In a similar way, the fuzzy random parameter, 
porosity of the soil also can be also represented but 
due to its similar structural behaviour of fuzziness as 
well as randomness it has not been shown just simply 
to avoid the repetition of the same figure. Substitution 
of all these fuzzy random parameters into Eq. (19) 
with the other specified fixed input parameters 
including the source term ‘Q’ results the fuzzy 

random concentration of the contaminant at the target 
set points. The concentration of the contaminant now 
being a fuzzy random variable has two modes: 
fuzziness and randomness. At any alpha cut level it 
will have randomness which will be governed by a 
pulse-shaped Gaussian like distribution.  Therefore, if 
the mean value of the randomness of the contaminant 
concentration is estimated for each downstream 
distance at any alpha cut level, one can have the 
profile of the mean concentration of the contaminant 
over downstream distances at any alpha cut level and 
the same has been presented at alpha cut of 0.5 in Fig. 
7. Subsequently the lower bound of the pulsed mean 
concentration profile over different downstream 
distances for other alpha cuts (0.1, 0.2, 0.3 and 0.7) is 
presented in Fig. 8. It is now evident clearly from the 
Fig. 7 that the lower and upper bound of the mean 
concentration profile (alpha cut value) over distance 
is shaped as Gaussian like pulse. The trailing part of 
the lower and upper bound of the pulse (Fig. 7) is not 
exactly as trailing part of pure Gaussian shaped pulse 
and the obvious reason is due to the fuzziness of the 
concentration as well. Continuing the same 
discussion, it can be stated from Fig. 7 that 0.5 alpha 
cut value of the peak of the pulse of the mean 
concentration results at two different downstream 
distances (lower peak occurred at 100 m and the 
upper peak occurred at 240 m).         
 

 
Fig. 7 Lower and upper bound profile of Mean 
concentration of contaminant  at alpha cut of 0.5 
 
It can be also stated that the alpha cuts are nothing 
but the possibility value of the fuzziness part of the 
mean concentration. Therefore, it can be also 
interpreted as the possibility of the maximum value of 
the mean concentration at distance 100 m and at 240 
m is 0.5.  
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Fig. 8 Lower bound profile of  Mean concentration of 
contaminant  for different alpha cuts 
 
It is obvious that fuzzy random concentration of the 
contaminant will have its fuzziness at every 
downstream distance. Accordingly, the fuzziness of 
the mean concentration at 91.0 m downstream 
distance is shown in Fig. 9.  

 
 
Fig. 9 Membership function of Mean concentration at 
91.0 m 
In order to know the variation of the fuzziness of 
mean concentration of the contaminant over different 
downstream distances, membership functions of the 
mean concentration at downstream distances 391 m, 
441 m and 491 m respectively are shown in Fig. 10. 

 
Fig. 10 Membership function of mean concentration at 
different downstream distance 
 
Results of set 2: 

In this set, computation of fuzzy random 
concentration of contaminant is carried out at a fixed 
downstream distance, x = 150 m and at various time 
ranged from 1 y to 10 y with a time step of 1y.  Time 
profile of the mean value of fuzzy random 
concentration at alpha cut of 0.5 is shown in Fig. 11. 

 
Fig. 11 Time profile of mean value of fuzzy random 
concentration at alpha cut of 0.5 
 
Lower bound of the temporal profile of the mean 
value of fuzzy random concentrations at alpha cut of 
0, 0.1 and 0.2 are shown in Fig. 12  

 
Fig. 12 Time profile of lower bound of mean value of 
fuzzy random concentration at alpha cut of 0, 0.1 and 
0.2 
In order to investigate the fuzziness of the mean value 
of fuzzy random concentration at a specific 
downstream distance (150 m) and at different time 
membership function of the same at time 2 y, 3y and 4 
y are presented in Fig. 13.  It is clearly understood 
from Fig. 13 that fuzziness of the mean concentration 
at all the time is not pure triangular membership 
function. 
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Fig. 13 Fuzziness of mean value of fuzzy random 
concentration at time 2 y, 3y and 4 y 
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